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Chapter 1

Introduction to pointfree functional programming

1.1 Functions and Types

A function

f : A→ B (1.1)

is an abstraction of the following process: it is a “black box” that produces a specific result
from a given input.

x ∈ A f (f x) ∈ B

The box itself is not really relevant to describe such a process. What is truly important is the
function’s name, the type of the input data and the type of the output data. Therefore, the
process can be described by a simple arrow

A
f // B

This translates to the following “contract”:

f commits itself to producing a value of type B as long as it is provided with a
value of type A.

This contract corresponds to the signature or type of the function, expressed by the arrow
A → B. It has become standard to use arrows to represent function signatures (or types).
Therefore, in order to indicate that the function f accepts arguments of type A and produces
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results of type B, the following equivalent notations are used:

f : A→ B, A
f // B , f : B→ A ou B A

foo

This corresponds to writing f :: a -> b in the functional programming language Haskell,
where type variables are expressed using lowercase letters. A will be referred to as the
domain of f , and B as the codomain of f . Both A and B are symbols or expressions that
denote sets of values, more commonly known as types.

How are the values at the output of a function produced? To answer this question, we have
to inspect the inside of the “black box” to find out what the “rule of computation” of the
function is. For example,

succ : Î→ Î

succ n def
= n + 1

expresses the rule of “finding the next natural number” — the successor of n is n + 1.

The definition of the rule of computation is the most frequent approach to defining a function,
i.e, that of directly specifying its behaviour at an arbitrary point of the domain, which is called
a variable. In the example given above, it is specified directly on the arbitrary point n of the
domain of succ (Î) that the behaviour of succ at that point is to add one unit to it. This
approach is called the pointwise definition — one defines a “rule” that is applied to all points
in the domain.

On the other hand, pointfree definitions are characterised by the absence of points (or vari-
ables). Functions are defined via a combination of other, simpler functions, using a limited
set of combinators. The choice of these combinators is dictated by the power of the calcu-
lus laws that are associated with them. One of the main objectives of this approach is to
facilitate compositional programming, one of the bases of the construction of software. The
composition of functions will be the first combinator to to be studied in the section 1.5.

1.2 Function application

The purpose of functions is to be applied to arguments in order to obtain results. This appli-
cation is expressed by juxtaposition. For example, for f : A → B and a ∈ A, the application
of f to the argument a is denoted as f a.

It is also important to note that function application associates to the left. That is, for g :A→
B → C, where a ∈ A and b ∈ B, g a b represents (g a) b and not g (a b). For this reason,
g : A→ B→ C is an abbreviation of g : A→ (B→ C) and not g : (A→ B) → C.

Functions like g :A→ B→ C are often referred to within the context of functional program-
ming as functions that receive “multiple arguments sequentially”. Such functions are called
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higher-order functions and will be discussed in more detail later on. However, it is essential
to introduce some concepts in this context.

1.3 Introduction to higher-order functions

Let us consider the function take :: Int -> [a] -> [a], which returns the largest prefix
of a given list whose size does not exceed n, as an example.

> take 3 []
[]
> take 3 [1,2,3,4,5]
[1,2,3]
> take 7 [1,2,3,4,5]
[1,2,3,4,5]

As mentioned earlier, take :: Int -> [a] -> [a] is a simplified form of the signature
take :: Int -> ([a] -> [a]). In other words, the function first takes an integer n, and
then, if the process allows, the function take n :: [a] -> [a] is executed, resulting in
the mentioned specification. Therefore, we may think of a family of functions taken : [a] →
[a] indexed by the integer n, given by taken = take n.

For example,

> f = take 3
:t f
f :: [a] -> [a]
> f [1,2,3,4,5]
[1,2,3]
>
> g = take 7
:t g
g :: [a] -> [a]
> g [1..10]
[1,2,3,4,5,6,7]

Consider also the function filter :: (a -> Bool) -> [a] -> [a] which returns the
largest sublist whose elements satisfy the predicate p :: (a -> Bool). There is also a
family of functions filterp :: [a] → [a] indexed by the predicate p given by filterp = filter p.
For example,

> :t even
even :: Integral a => a -> Bool
> even 7
False
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> even 10
True
>
> getEven = filter even
> :t getEven
getEven :: Integral a => [a] -> [a]
> getEven [1..10]
[2,4,6,8,10]

TBC

1.4 Functional equality

Two functions f , g : A→ B are equal if they “agree” at the pointwise-level, that is

f = g iff ⟨[a : a ∈ A : f a =B g a⟩ (1.2)

where ⟨[x : R : T⟩ means “for all x in the range R, the term T holds”, where R and T are
logical expressions involving x, and =B denotes equality in the set B.

1.5 Functional composition

This is the first functional combinator to be studied in this course. Let f and g be the following
functions:

A
f // B

B
g // C

“Chaining” the two arrows, one obtains another function g · f : A→ C

A
f //

g.f

55B
g // C

called the composition of g and f .

x f f x g g (f x)
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One reads it as g after f and it is defined in the usual way:

(g · f ) x = g (f x) (1.3)

Functional composition is one of the foundations of this discipline. We can functionally
compose n functions, provided that the output type of each function matches the input type
of the “next function”.

N . . .
fnoo D

f4oo C
f3oo B

f2oo A
f1oo

fn·(...)·f4·f3·f2·f1

ii

Being the most basic of all functional combinators, most programmers don’t even think of it
when they want to combine or chain functions to get a more elaborate program. This is due
to one of its most important properties, the associative property of composition:

D
g·h

zz
h
��

B

f
��

A
goo

f ·gzz
C

(f · g) · h = f · (g · h) (1.4)

Another important property is the law of Leibniz,

f · h = g · h ⇐ f = g (1.5)

which states that, given the equality of two functions, the pre-compositions of them with
another function also form an equality — the opposite is not true.

Problem 1 A mobile phone manufacturer has submitted the following requirements
for the storage operation of a phone call:

(a) the most recent calls appear first;

(b) no repeated calls appear;

(c) only the last 10 entries are stored.

Write a definition of the operation store :: Call -> [Call] -> [Call] which
adds a call to a list of calls according to the given criteria, using only the variable
of type Call.

Solution store c = take 10 . (c :) . filter (/= c)



6 CHAPTER 1. INTRODUCTION TO POINTFREE FUNCTIONAL PROGRAMMING

1.6 Identity functions

Identity functions are those that simply copy the input to the output: f a = a, for f : A→ A
and a ∈ A. In this case, f is called the identity function on A:

idA : A→ A

idA a
def
= a

(1.6)

As expected, every type X has its identity function idX . However, subscripts will be omitted
whenever they are implicit in the context. We can thus assume a “single” identity function.

At first glance, the identity function may not seem very useful or interesting. However, it
becomes important when it comes to preserve information and also in its interaction with
functional composition, as captured by its natural property:

f · id = id · f = f (1.7)

1.7 Constant functions

Unlike the identity function, which does not lose any information, constant functions lose
all (or almost all) information. Regardless of the input data, the output is always the same
value. For example, if g is the constant function that produces the number 23, then:

> g 7
23
> g "hello there!"
23
> g 23
23
> g []
23
> g 'p'
23
> g [1..]
23

Thus, let C be a non-empty datatype and c ∈ C. The constant function everywhere c, for an
arbitrary type A, is defined as follows:

c : A→ C

c a def
= c

(1.8)



ALGEBRA OF PROGRAMMING 7

Therefore, the example function g is given by g = 23. In Haskell, constant functions are
defined using the function const :: a -> b -> a from the Standard Prelude. Thus, g = c
is defined in Haskell as g = const c.

Finally, the following properties are quite intuitive,

C

id
��

A
c

oo

f
��

C Bc
oo

c · f = c (1.9)

f · c = f c (1.10)

known respectively as the natural-constant property and the constant-fusion property.

Note that in the diagram of property 1.9, the symbol c denotes two different functions: cA :
A → C and cB : B → C. Thus, just like with identity functions, subscripts will be omitted
whenever they are implicit in the context.

As we have seen, identity functions and constant functions are the limits in the “functional
spectrum” regarding data preservation. The identity function preserves all the values it re-
ceives, while constant functions lose all (or almost all) the data. Any other function lies “in
between” these two functions, losing some of the input data. How does a function lose infor-
mation? Essentially, in two ways: by “confusing” arguments and mapping them to the same
output, or by simply “ignoring” values from its domain. Such functions will be the subject of
study in the next sections.

1.8 Monomorphisms

A monomorphism (or injective function) is a function that “does not confuse arguments”, i.e.,
it does not produce the same result for two different inputs.

For example, let g be the function that calculates the square of an integer. Given that x = 4,
what is the value of x? It could be 2, but it could also be −2. In other words, g confuses the
two arguments 2 and −2, as even though they are different values, the function maps both
values to the same result.

Therefore, a function B A
foo is said to be a monomorphism if, for any pair of functions

A C
h,koo , if f · h = f · k then h = k, cf.

B A
foo oo h C

k
oo

We say that f is “post-cancellable”.
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1.9 Epimorphisms

An epimorphism (or surjective function) is a function that does not “ignore values” from its
codomain. In other words, if f : A → B is an epimorphism, for any value b ∈ B, there is at
least one a ∈ A such that b = f (a).

It is easy to verify that most constant functions are not epimorphisms, except for those whose
codomain is a singleton set, i.e., a set with only one element. Consider, for example, the
function g = 23 with the codomain Î0. The function only produces the value 23, and all
other natural numbers are ignored.

Therefore, a function A B
foo is said to be an epimorphism if, for any pair of functions

C A
h,koo , if h · f = k · f then h = k, cf.

C oo
h

A
k
oo B

foo

We say that f is “pre-cancellable”.

1.10 Isomorphisms

An isomorphism is a function that is both a monomorphism and an epimorphism. The term
isomorphism derives from the Greek words “isos” meaning “equal” and “morphe” meaning
“form”. This concept conveys the idea of a function that maps values from one type A to an
“equivalent” type B, i.e., a type with the “same form”. Thus, a function f : A → B that is an
isomorphism always has an inverse function f ◦ : B→ A such that

f · f ◦ = idB ∧ f ◦ · f = idA, (1.11)

which means that f is invertible.

Isomorphisms are highly significant as they can convert data from one particular “format”
(e.g., A) to another “format” (e.g., B) without losing information. These formats contain the
same information but differently organized. We say that A is isomorphic to B and write
A � B to express this fact. Isomorphic data domains are considered abstractly the same. For
example, let us recall the distributive property of elementary algebra:

x (y + z) = x y + x z

A number written in the format x (y + z) can be rewritten in the format x y + x z, and vice
versa, without any alteration. The expressions x (y + z) and x y + x z are equivalent “formats”
in numerical representation.
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Isomorphisms also provide flexibility in pointfree calculus. If, for some reason, f ◦ is easier
to algebraically manipulate than f , then the following rules, known as “shunting rules”,

f · g = h ≡ g = f ◦ · h
g · f = h ≡ g = h · f ◦

(1.12)

will be of great help.

1.11 Product of functions

In section 1.5, functional composition was presented as one of the basis for combining func-
tions to construct more complex ones. However, not all functions can be combined using
composition. For example, functions f : A → B and g : A → C are a case where functional
composition cannot be applied because the input type of one function does not match the
output type of the other. However, since both functions share the same input type, they can
be combined in the following way:

B C

A
f

__

g

??

resulting in the set of pairs (f a, g a) for each a ∈ A. This set is given by the cartesian product
of B with C, i.e., the set

B × C = {(b, c) | b ∈ B ∧ c ∈ C}

This operation of pairing outputs from functions f and g that share the same domain will be
the new combinator ⟨f , g⟩ defined as follows:

⟨f , g⟩ : A→ B × C

⟨f , g⟩ a def
= (f a, g a)

(1.13)

and pronounced “f split g”.

The ⟨f , g⟩ combinator captures the information of both functions f and g in a similar way to
how the cartesian product A × B captures the types A and B. This means that, just like the
types A and B can be extracted from the cartesian product using the projections π1 and π2,

A A × Bπ1oo π2 // B

whose definitions are

π1 (a, b) = a ∧ π2 (a, b) = b (1.14)

functions f and g can also be extracted from ⟨f , g⟩ using the same projections:

π1 · ⟨f , g⟩ = f ∧ π2 · ⟨f , g⟩ = g (1.15)
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This fact corresponds to the ×-cancellation property expressed in the following diagram:

A A × Bπ1oo π2 // B

C
f

bb

g

==

⟨f ,g⟩

OO

What if functions f and g do not share the same domain?

C A
foo

D B
goo

. . .?

The ⟨f , g⟩ combinator cannot be used in this case. However, the projections π1 and π2 over
the product A × B still allow us to use the split combinator as follows:

C C × Dπ1oo π2 // D

A × B
f ·π1

hh

g·π2

66

⟨f ·π1,g·π2⟩

OO

The resulting function ⟨f · π1, g · π2⟩ is mapping A × B to C × D, which corresponds to the
parallel application of f with g and will be expressed as f × g. Thus, by definition,

f × g def
= ⟨f · π1, g · π2⟩ (1.16)

≡ { extensional equality (1.2) }

(f × g) (a, b) def= (f a, g b) (1.17)

and is pronounced“product of f with g”.

What results from the interaction between the composition f · g, the split ⟨f , g⟩ and the
product f × g combinators? Several properties, which, together with the aforementioned
×-cancellation (1.15), form the laws of functional calculus with respect to the product:

• ×-fusion, which relates composition with split:

C C × Dπ1oo π2 // D

B
g

bb

h

<<

⟨g,h⟩

OO

A

g·f

YY

h·f

EE

f

OO

⟨g, h⟩ · f = ⟨g · f , h · f ⟩ (1.18)
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• ×-absorption, in which “split absorbs ×”:

D D × Eπ1oo π2 // E

B

i

OO

B × C

i×j

OO

C

j

OO

A
g

bb

h

<<

i·g

YY

j·h

EE

⟨g,h⟩

OO

(i × j) · ⟨g, h⟩ = ⟨i · g, j · h⟩ (1.19)

• natural-π1:

D D × Eπ1oo

B

i

OO

B × C

i×j

OO

π1
oo

i · π1 = π1 · (i × j) (1.20)

• natural-π2:

E D × Eπ2oo

C

j

OO

B × C

i×j

OO

π2
oo

j · π2 = π2 · (i × j) (1.21)

• ×-functor, which expresses a “bi-distribution” of × through composition:

(g · h) × (i · j) = (g × i) · (h × j) (1.22)

C (C × F)π1oo π2 // F

B

g

OO

(B × E)

g×i
OO

E

i

OO

A

h

OOg·h

GG

(A × D)

h×j
OO

π1
oo

π2
//

(g×i)·(h×j)

^^

D

j

OO i·j

WW

• ×-id-functor:

A A × Bπ1oo π2 // B

A

idA

OO

A × B
idA×B

OO

π1
oo

π2
// B

idB

OO idA × idB = idA×B (1.23)

• ×-reflection, where the split combinator is constructed solely using the projections π1
and π2:

A A × Bπ1oo π2 // B

A × B

π1

aa

π2

==

idA×B

OO ⟨π1, π2⟩ = idA×B (1.24)
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1 -- projections
2 p1 = fst
3 p2 = snd
4

5 split :: (a -> b) -> (a -> c) -> a -> (b,c)
6 split f g a = (f a, g a)
7

8 infix 5 ><
9 (><) :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)
10 (><) f g = split (f . p1) (g . p2)

Problem 2 Present a pointfree definition of the function average :: [Int] -> Int

which calculates the average of a list of integers.

Solution average = uncurry div . split sum length

1.12 Coproduct of functions

As we saw in the previous section, the functional combinator split was created to combine
functions that do not meet the requirements of function composition but share the same
domain. The “dual” situation corresponds to functions that share the same codomain, that
is, they have the same output type.

A

f ��

B

g��
C

Both functions f and g produce values of type C. Therefore, it is intuitive to think of a
combinator that executes f or g depending on “which side we are on” — either we are on
“side A” and execute f , or we are on “side B” and execute g. Let us call this combinator [f , g].
The codomain of [f , g] will be C. Now, what should be its domain? Well, it should be a
datatype that represents “either A or B”. For this, we might consider using A ∪ B. However,
when the intersection A ∩ B is non-empty, it is not possible to determine if a given element
x ∈ A ∩ B came from “side A” or “side B”. Therefore, we need to use the concept of disjoint
union,

A + B def
= { i1 a | a ∈ A} ∪ { i2 b | b ∈ B}

assuming the “tagging” functions i1 and i2, whose signatures are A
i1 // A + B B

i2oo ,
which associate a different tag to ensure that values of type A and values of type B do not
mix in the set A + B. Functions i1 and i2 are called the injections of the disjoint union, and
it is said that i1 “injects” values on the left, while i2 “injects” values on the right.
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In the Haskell Standard Prelude, the datatype A + B is given by

data Either b c = Left b | Right c

which means that Left and Right correspond to the injections i1 and i2 respectively. So,
based on the disjoint union A + B, also known as the coproduct of A and B, the combinator
[f , g] is defined, pronounced as “either f or g”:

[f , g] : A + B→ C

[f , g] x def
=

{
x = i1 a⇒ f a
x = i2 b⇒ g b

(1.25)

Just as we did with the product, we can express this combinator in a diagram:

A
i1 //

f &&

A + B
[f ,g]
��

B
i2oo

g
xxC

It is interesting to note how similar the diagrams of the product and the coproduct are —
we simply invert the arrows, replace the projections with injections and the split with the
either. This reflects the fact that the product and the coproduct are dual constructions in
mathematics (just like sine and cosine in trigonometry). This duality leads to a significant
economy, as everything said about the product A×B can be dualized to the coproduct A+B.
For example, the sum of functions f + g is given by the dual notion of the product f × g:

f + g def
= [i1 · f , i2 · g] (1.26)

The following properties also contribute as evidence of the mentioned duality:

• +-cancellation:

A
i1 //

f &&

A + B
[f ,g]
��

B
i2oo

g
xxC

{
[f , g] · i1 = f
[f , g] · i2 = g

(1.27)

• +-fusion:

A

h·f

��

i1 //

f !!

A + B

[f ,g]
��

B

h.g

��

i2oo

g}}
C

h
��
D

h · [f , g] = [h · f , h · g] (1.28)
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• +-absorption:

A

g·i

��

i1 //

i
��

A + B

i+j
��

B

h·j

��

i2oo

j
��

D

g
""

D + E

[g ,h]
��

E

h
}}

C

[g , h] · (i + j) = [g · i, h · j] (1.29)

• natural-i1:

A
i1 //

i
��

A + B

i+j
��

D
i1
// D + E

(i + j) · i1 = i1 · i (1.30)

• natural-i2:

B
i2 //

i
��

A + B

i+j
��

E
i2
// D + E

(i + j) · i2 = i2 · j (1.31)

• +-functor:

(g · h) + (i · j) = (g + i) · (h + j) (1.32)

C
i1 // C + F F

i2oo

B

g

OO

B + E
g+i
OO

E

i

OO

A
i1

//

h

OOg·h

GG

A + D
h+j
OO (g+i)·(h+j)

``

D

j

OO i·j

XX

i2
oo

• +-id-functor:

A
i1 // A + B B

i2oo

A
i1
//

idA

OO

A + B
idA+B

OO

B
i2
oo

idB

OO idA + idB = idA+B (1.33)

• +-reflection:

A
i1 //

i1 !!

A + B

idA+B
��

B
i2oo

i2}}
A + B

[i1 , i2] = idA+B (1.34)
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1 -- injections
2 i1 = Left
3 i2 = Right
4

5 -- either is defined in 'Data.Either'
6 either :: (a -> c) -> (b -> c) -> Either a b -> c
7 either f _ (Left a) = f a
8 either _ g (Right b) = g b
9

10 infix 4 -|-
11 (-|-) :: (a -> b) -> (c -> d) -> Either a c -> Either b d
12 (-|-) f g = either (i1 . f) (i2 . g)

1.13 The exchange law

A function that maps values from a coproduct A + B to values of a product A′ × B′ can be
alternatively expressed as an either or a split. Both expressions are equivalent, and this
equivalence is captured by the exchange law:

[⟨f , g⟩ , ⟨h, k⟩] = ⟨[f , h], [g , k]⟩ (1.35)

A

α

��

g

##

i1 //

f

��

A + B
[α ,β ]

��

B

h

{{

i2oo

k

��

β

��
C C × Dπ1
oo

π2
// D

A
g

##

i1 //

f

��

A + B

β ′

��

α ′

��
⟨α ′,β ′⟩
��

B
h

{{

i2oo

k

��
C C × Dπ1
oo

π2
// D

σ = [α , β ]
α = ⟨f , g⟩
β = ⟨h, k⟩

σ′ = ⟨α′, β ′⟩
α′ = [f , h]
β ′ = [g , k]

σ = σ′
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1.14 Natural properties

A

f
��

F A

F f
��

G A

G f
��

φoo

B F B G B
φ
oo

(F f ) · φ = φ · (G f ) (1.36)

1.15 Universal properties

TBC

1.16 McCarthy’s conditional

Most functional programming languages provide pointwise conditional expressions in the
form

if p x then f x else g x (1.37)

which translates into the following process: given a predicate p : A → Â and two functions
f , g : A→ B, if p x holds then the process results in f x, otherwise in g x, i.e.,{

p x⇒ f x
¬ (p x) ⇒ g x

Can we rewrite the expression (1.37) in a pointfree style? Let us start by assuming that p x
has already been calculated. In this case, either f is executed or g is executed. Now, this
latter operation is clearly the combinator [f , g].

A

��
A

i1 //

f $$

A + A
[f ,g]
��

A
i2oo

g
zz

B

This means that if p x holds, the argument is injected on the left side, so that the operation
f x is executed. Otherwise, the argument is injected on the right side, and g x is executed
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instead of f x. Therefore, let us denote this operation as (p?). It is quite clear that the
expression (1.37), rewritten in a pointfree style, is given by

[f , g] · p? (1.38)

What can be said about (p?)? Let us start by introducing the following isomorphism:

Â × A
α◦

**
� A + A
α

ii α = [⟨True, id⟩ , ⟨False, id⟩] (1.39)

whose function α◦ will be of great utility in the definition of p?, as it precisely produces what
[f , g] takes as input. Therefore, let us calculate α◦ from α◦ · α = id

α◦ · α = id (1.40)

≡ { definition of α }

α◦ · [⟨True, id⟩ , ⟨False, id⟩] = id (1.41)

≡ { +-fusion (1.28); +-reflection (1.34); +-eq (??) }{
α◦ · ⟨True, id⟩ = i1
α◦ · ⟨False, id⟩ = i2

(1.42)

≡ { extensional equality (1.2); composition (1.3); constant-def (1.8); natural-id (1.7) }{
α◦ (True, x) = i1 x
α◦ (False, x) = i2 x

(1.43)

The goal now is for the function α◦ to receive the pair (p x, x), in order to inject the argument
into the corresponding “side” dictated by the result of p x. To do this, we simply execute
⟨p, id⟩, as follows:

A
⟨p,id⟩ //

p?

44Â × A α◦ // A + A

The function p? is referred to as the guard associated with the predicate p. In a way, the
guard p? is much more informative than the predicate itself, as it already gives us the result
of testing p on a given input.

Finally, the composition (1.38) can be represented by the following complete diagram:

A

⟨p,id⟩
��

p?

��

Â × A
α◦
��

A
i1 //

f $$

A + A
[f ,g]
��

A
i2oo

g
zz

B
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corresponds to the well-known functional combinator “McCarthy’s conditional” and is usually
denoted by the expression p→ f , g. Therefore,

p→ f , g def
= [f , g] · p? (1.44)

The use of the either combinator suggests that, when reasoning about conditionals, one can
turn to the algebra of coproducts as a potential aid. In fact, the first fusion law for conditionals

h · (p→ f , g) = p→ h · f , h · g (1.45)

is a direct consequence of the +-fusion law (1.28). The second fusion law also results from
another law of coproducts, namely the +-absorption (1.29).

(p→ f , g) · h = (p · h) → f · h, g · h (1.46)

Note that before applying the absorption law, it was necessary to apply the natural property
of the guard:

p? · f = (f + f ) · (p · f )? (1.47)

1 grd :: (a -> Bool) -> a -> Either a a
2 grd p x = if p x then i1 x else i2 x
3

4 -- McCarthy's conditional:
5 cond :: (b -> Bool) -> (b -> c) -> (b -> c) -> b -> c
6 cond p f g = (either f g) . (grd p)

Problem 3 Present a pointfree definition of the function outList, given by

outList [] = i1 ()
outList (h:t) = i2 (h, t)

Solution outList = (const () -|- split head tail) . grd (== [])

1.17 Exponentials

Given a function f : C × A → B, we want to construct a family of functions of type A → B
according to the following approach: for each c ∈ C, we construct the function

fc : A→ B

fc a
def
= f (c, a)

(1.48)
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In other words, the construction of this family is a function of type C → (A→ B), meaning
that given a c ∈ C, it produces a function of type A → B. Functions of this type are called
higher-order functions — functions that not only produce functions but also receive functions
as arguments. To represent the type A→ B (or B← A), we shall use the notation BA. Thus,

BA def
= {g | g : A→ B} (1.49)

corresponds to the set inhabited by functions from A to B, which means that the functional
declaration g : A → B is equivalent to g ∈ BA. And since the purpose of functions is to be
applied to arguments, the introduction of the apply combinator is quite intuitive:

ap : BA × A→ B

ap (f , a) def= f a
(1.50)

Now, going back to the function f : C × A → B, let us recall the strategy of, for each c ∈ C,
producing a function fc ∈ BA. As mentioned, this process corresponds to a function of type
C → BA, which expresses f as a family of functions of type A → B indexed by the type C.
Such functions will be referred to as transposes, and the notation f will be used to represent
them, read as “transpose of f ”. As expected, f and f are mutually related by the following
property:

f (c, a) = (f c) a (1.51)

The rule is

B C × Afoo

BA C
foo

However, despite the equality, f has the advantage of being more “tolerant” than f . While f
requires both arguments in the pair (c, a), f “settles” for receiving the argument c first, and
later, if the process allows, the argument a.

Just like the product A×B and the coproduct A+B, the exponentiation BA also has a universal
property,

k = f ⇔ f = ap · (k × id) (1.52)

from which the following laws can be derived:

• Exp-cancellation:

BA BA × A ap // B

C

f

OO

C × A
f×id

OO

f

<< f = ap · (f × id) (1.53)

• Exp-reflection:

BA BA × A ap // B

BA

idBA

OO

BA × A

idBA×idA

OO

ap

<< ap = idBA (1.54)
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• Exp-fusion:

BA BA × A ap // B

C

g

OO

C × A

g×id

OO
g

<<

D

f

OO

D × A
f×id

OO g·(f×id)

EE g · (f × id) = g · f (1.55)

The remaining laws of exponentiation, such as the absorption law, require the new functional
combinator that arises from the function f · ap. What will be the signature of this function?
The diagram of f · ap:

B

f
��

BA × Aapoo

f ·ap||
C

leaves no doubt that the answer is f · ap : BA → CA. The notation to be used to express the
combinator f · ap will be fA, which follows the rule

C oo
f

B

CA oo
f A

BA

But what does this new combinator mean? Well, fA takes a function g :A→ B as an argument
and returns a function of type A→ C. Therefore, given a specific a ∈ A, (fA g) awill produce
a value of type C. It is known that the function f produces values of type C as long as it is
given a value of type B. Now, g produces values of type B. Thus, we execute g a, obtaining
a b ∈ B, which is then passed to the function f to produce a c ∈ C. So, what is happening is
precisely the functional composition of f with g, i.e., fA translates to the “composition with
f ” combinator:

fA g def
= f · g (1.56)

i.e.,

fA def
= (f ·) (1.57)

In fact,

f · ap = fA

= { exp-universal (1.52) }

ap · (fA × id) = f · ap
= { extensional equality (1.2); functional composition (1.3) }

ap ((fA × id) (g, a)) = f (ap (g, a))
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= { ×-def (pointwise) (1.17); apply operator (1.50) }

(fA g) a = f (g a)
= { functional composition (1.3) }

(fA g) a = (f · g) a
= { extensional equality (1.2) }

fA g = f · g
□

We are now ready to understand the following properties:

• Exp-absorption:

DA DA × A ap // D

BA
f A

OO

BA × A

f A×id

OO

ap // B

f

OO

C

g

OO

C × A

g×id

OO

g

;;

fA · g = f · g (1.58)

Note how the diagram also provides a proof for fA = f · ap.

• Exp-functor:

(g · h)A = GA · hA (1.59)

• Exp-id-functor:

idA = id (1.60)

Let us now return to property (1.51). The chosen notation allows us to express the equality
f (a, b) = (f a) b through the isomorphism

C × A→ B � C → BA

which, in turn, can be rewritten as

BC×A � (BA)C (1.61)

This congruence reminds us of a well-known equality in numerical exponentiation: bc×a =

(ba)c. Other properties of numerical exponentiation, such as bc+a = bc × ba and (c × a)b =

ca × cb, also have their “corresponding” isomorphisms in functional exponentiation. The first
one corresponds to the isomorphism

BC+A � BC × BA (1.62)
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i.e., each pair of functions (f , g) ∈ BC ×BA leads to a unique function [f , g] ∈ BC+A and vice
versa, each function [f , g] ∈ BC+A leads to two functions f ∈ BC and g ∈ BA. The second
property corresponds to the isomorphism

(C × A)B � CA × CB (1.63)

which is justified analogously, now using the uniqueness of the ⟨f , g⟩ combinator. Such sim-
ilarities justify the adoption of exponential notation.

Isomorphism (1.61) is at the core of functional programming — in Haskell, we find the pre-
defined functions that compose it:

BC×A
curry

**
� (BA)C

uncurry
ii (1.64)

curry :: ((a, b) -> c) -> a -> b -> c
curry f a b = f (a, b)

uncurry :: (a -> b -> c) -> ((a, b) -> c)
uncurry f (a, b) = f a b

This means that curry corresponds to transposition in Haskell, that is, f corresponds to writ-
ing curry f, cf. the equivalence

(

f︷  ︸︸  ︷
curry f a) b = f (a, b)

≡ { apply operator (1.50); id definition (1.6) }

ap (f a, id b) = f (a, b)
≡ { product (1.17); composition (1.3) }

(ap · (f × id)) (a, b) = f (a, b)
≡ { extensional equality (1.2) }

ap · (f × id) = f

from which it follows that the definition of curry is a reformulation of the cancellation law
(1.53), and therefore,

curry f def
= f (1.65)

Finally, in order to simplify algebraic notation, the inverse of transposition will also have its
own notation: uncurry f will be abbreviated as f̂ , i.e.,

g = f ⇔ ĝ = f (1.66)
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Chapter 2

Introduction to pointfree recursion

2.1 Motivation

TBC

2.2 Inductive datatypes

A datatype is said to be inductive or recursive when it refers to itself in its definition, i.e.,
T � . . . T . . . (which is written in Haskell as data T = ... T ...). A well-known example
of this is the case of lists, or finite sequences, already defined in the Haskell Standard Prelude
as follows:

data [a] = [] | a : [a]

A list whose elements are of type A is either empty or constructed by concatenating an
element a ∈ A (usually referred to as the head) with another list (usually referred to as the
tail). For example,

> []
[]
> 1 : []
[1]
> 1 : 2 : 3 : []
[1,2,3]

Let us begin by assuming that this datatype is not yet defined and, therefore, we want to de-
fine finite sequences as data Seq a = .... Knowing that a sequence can be either empty
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or the construction of a pair head and tail, we shall use the constructors Nil and Cons:

data Seq a = Nil | Cons (a, Seq a)

In order for values to be displayed in the usual format, i.e., [] for the empty list and
[a,b,c,...] for Cons (a, Cons (b, Cons (c, ...))), it is necessary to implement
an instance of the Show class. For example,

instance Show a => Show (Seq a) where
show l = "[" ++ showSeq l ++ "]"

where
showSeq Nil = ""
showSeq (Cons (h, Nil)) = show h
showSeq (Cons (h, t)) = show h ++ "," ++ showSeq t

Thus, using the same examples,

> Nil
[]
> Cons (1, Nil)
[1]
> Cons (1, Cons (2, Cons (3, Nil)))
[1,2,3]

We shall adopt the notation A∗ to represent lists, or finite sequences, of values of type A.
This leads to the following diagram:

1

Nil $$

i1 // 1 + A × A∗

inSeq
��

A × A∗

Consxx

i2oo

A∗

inSeq = [Nil,Cons]

that is,

A∗

outSeq
))

� 1 + A × A∗

[Nil ,Cons]

gg

Note
Despite the signature ofNil being B→ A∗, the domain is limited to the singleton type 1
due to the signature of outSet. This function is derived from the equation outSeq ·inSeq =
id,

outSeq · inSeq = id

≡ { +-fusion (1.28); +-reflection (1.34) }
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[outSeq · Nil, outSeq · Cons] = [i1 , i2]

≡ { +-eq (??); extensional equality (1.2); constant (1.8) }{
outSeq Nil = i1 ()
outSeq (Cons (h, t)) = i2 (h, t)

resulting in outSeq :A∗ → 1+A×A∗. It is also worth noting that data Seq a = Nil |

Cons (a, Seq a) is a simplification of data Seq a = Nil () | Cons (a, Seq

a). In the latter case, we have inSeq = [Nil,Cons], i.e., Nil : 1→ A∗. However, Haskell
allows this more “programming-oriented” simplification, where the parameter () can
be eliminated, resulting in inSeq = [Nil,Cons].

Note the terminology used: inT and outT (in this particular case, inSeq and outSeq for the
type A∗) — inT (“going inside”) implies constructing or synthesizing values of A∗, while outT
(“going outside”) suggests deconstructing or analyzing values of A∗. We will frequently rely
on this duality throughout the notes.

Since it is not our intention to define an already well-implemented datatype, the objective
now is to transpose what we have just concluded to the type [a]. By definition, it only
requires making small renamings:

A∗
outList

))
� 1 + A × A∗

[[ ] , (̂:)]

gg (2.1)

As expected, the function outList will be similar to outSeq:

outList · inList = id
≡ { +-fusion (1.28); +-reflection (1.34) }

[outList · [ ] , outList · (̂:)] = [i1 , i2]

≡ { +-eq (??); extensional equality (1.2); constant (1.8) }{
outList [ ] = i1 ()
outList (h : t) = i2 (h, t)

In order to simplify the notation, we define the “constructors” nil = [ ] and cons = (̂:). These
functions are defined in the Cp.hs and List.hs libraries of the discipline.

1 nil = const []
2

3 cons = uncurry (:)
4

5 inList = either nil cons
6

https://haslab.github.io/CP/Material/Cp.hs
https://haslab.github.io/CP/Material/List.hs
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7 outList [] = i1 ()
8 outList (a:x) = i2 (a,x)

Everything we have just considered pertains to a particular isomorphism, that of construct-
ing finite sequences. However, there are other datatypes, such as trees, hash tables, etc.,
that our notation and method should be able to accommodate. To achieve this, let us start
by generalizing the concept of inductive types. The isomorphism (2.1) can be rewritten as
follows:

A∗ � F A∗

by introducing the datatype operator F X = 1 + A × X . The operator F defines the recursive
pattern associated with the type A∗. This operator is known as a functor and will be the
subject of study in the next section. The rule is, given the definition of an inductive type in
the form:

T

outT
&&

� F T

intT

ee (2.2)

the recursion pattern is dictated by the functor F. For example, F X = A + X2 dictates the
recursive pattern of Leaf Trees, where the leaves are elements of type A.

data LTree a = Leaf a | Fork (LTree a, LTree a)

Renaming T to LTree A,

LTree A

outLTree
++

� A + LTree2 A

[Leaf ,Fork]

ii

2.3 Functors

A functor F can be seen as a datatype constructor that, given a type A, constructs a more
elaborate datatype F A. Similarly, given another type B, it constructs, in a similar fashion, a
datatype F B, and so on.

What is particularly relevant is that the structural effect created by the functor is also ex-
tended to functions. Given a function f :A→ B, note that the input type and the output type
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are parameters of F A and F B, respectively. By definition, if F is a functor, then F f :F A→ F B
exists for every f :

A

f
��

F A

F f
��

B F B

F f extends f to structures dictated by the functor F and, by definition, obeys the following
two properties:

• F-functor:

F (g · h) = F g · F h (2.3)

• F-id-functor:

F idA = id(FA) (2.4)

Two basic examples are followed:

• Identity functor:

A

f
��

A

f
��

B B

F X = X

F f = id

(2.5)

Properties (2.3) and (2.4) are trivially satisfied by simply removing the F symbol.

• Constant functor:

A

f
��

A

idC
��

C C

F X = C

F f = idC

(2.6)

Again, properties (2.3) and (2.4) are trivially satisfied.

Just as functions can be unary, binary, ternary, and so on, functors can also have different
arities. A s expected, properties (2.3) and (2.4) should hold for each argument of the n-ary
functor. For example, for a binary functor (also known as a bifunctor), equation (2.3) becomes:

B (g · h, i · j) = B (g, i) · B (h, j) (2.7)

and equation (2.4) becomes

B (idA, idB) = idB(A,B) (2.8)

Finally, just like functions, functors can also be composed with each other:

(F · G) X def
= F (G X) (2.9)

(F · G) f def
= F (G f ) (2.10)
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2.4 Polynomial functors

Polynomial functors are described by polynomial expressions, such as:

F X = 1 + A × X

Therefore, a polynomial functor can be one of the following three cases:

• the identity functor or a constant functor;

• the (finite) product or coproduct of polynomial functors;

• the composition of other polynomial functors.

As mentioned in the previous section, the structural effect of a functor is extended to func-
tions whose types are parameters of the functor. In the case of polynomial functors, this
effect is easily obtained when unfolding the functor into the product and/or coproduct of
the two basic functors (identity and constant functores). For example, F X = 1 + A × X can
be unfolded into F X = F1 X + F2 X × F3 X , where F1 X = 1, F2 X = A, and F3 X = X . Thus,

F1 f + F2 f × F3 f
= { constant functor (2.6) 2x e identity functor (2.5) }

id1 + idA × f
= { omit subscripts }

id + id × f

Therefore, 1 + A × X denotes the same as F f = id1 + idA × f or even id + id × f if we omit
the subscripts. The idea is that, when constructing the new type 1 + A × X from the type
X , the function used to traverse this new structure will be id + id × f , assuming that f is a
function that operates on X and that we do not want to modify the other elements of the
new structure. Thus, we can think of a functor as a “pair of functions”: F X constructs the
new datatype, and F f operates on that new type or structure.

Finally, it is important to know that any polynomial functor can be rewritten in canonical
form,

F X � C0 + (C1 × X) + (C2 × X2) + ... + (Cn × Xn)
=
∑n
i=0 Ci × X

i (2.11)

and that the Newton’s binomial formula

(A + B)n �
n∑
p=0

(
n
p

)
× An−p × Bp (2.12)

can be used for such conversions.
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2.5 Polynomial inductive datatypes

An inductive datatype is called polynomial whenever its recursive pattern is described by a
polynomial functor, i.e., whenever F in (2.2) is a polynomial.

Polynomial types are easy to define in Haskell whenever the associated functor is in canonical
form. Given a type

T �
∑n
i=0 Ci × T

i

inT

ee (2.13)

one has that

inT
def
= [TC0, . . . , TCn]1 (2.14)

where, for i ∈ {0, . . . , n}, TCi is the Type Constructor whose signature is T ← Ci × Ti. In
Haskell, the definition of T corresponds to

data T = TC0 C0 | TC1 (C1, T) | TC2 (C2, (T,T)) | ... | TPN (CN, (T, ..., T))

2.6 Catamorphisms

Given an inductive datatype T, the objective is to express a particular analysis of T, i.e., a
function with the signature f : T → B, for some output type B, for instance, calculating the
sum of all elements within a list of naturals. Thus, f corresponds to sum : Î0∗ → Î0. For
this purpose, two functions are required,

• addition in Î0:

add : Î0 × Î0 → Î0

add (x, y) def= x + y
(2.15)

• addition of “no elements”, given by the function Î0 1
0
oo , meaning that adding no

elements results in 0.

1 Note the abuse of notation — either is a binary operator, such as coproduct, thus functions should be grouped into
another alternatives, for instance, [TC0, TC1, TC2 ] :T← (C0+C1×T+C2×T2) should be [TC0, [TC1, TC2 ] ] :T←
(C0 + (C1 × T + C2 × T2))
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We quickly identify that the function 0 is required for the “base case” in the inductive defini-
tion of a list, that is, when the list is empty. Thus, we would have something like this:

Î0
∗

outList
))

sum

��

� 1 + Î0 × Î0∗

[0 ,...]oo

inList

hh

Î0

And what can be said about the sum of a list given by the construction of a pair head and
tail? It is simply the addition of the head with the sum of the tail.

Î0 × Î0∗
id+sum // Î0 × Î0

add // Î0

Thus, we obtain the following diagram:

Î0
∗

outList
))

sum

��

� 1 + Î0 × Î0∗

id+id×sum
��

inList

hh

Î0 1 + Î0 × Î0
[0 ,add]

hh

(2.16)

which presents the definition of sum:

sum = [0, add] · (id + id × sum) · outList (2.17)

easily converted to a pointwise definition:

sum = [0, add] · (id + id × sum) · outList
≡ { shunting rules (1.12) }

sum · inList = [0, add] · (id + id × sum)
≡ { inList definition; +-fusion (1.28); +-absorption (1.29); +-eq (??) }{

sum · nil = 0
sum · cons = add · (id × sum)

≡ { extensional equality (1.2); composition (1.3); constant (1.8); product (1.17) }{
sum [ ] = 0
sum (h : t) = h + sum t

Let us now do another analysis or observation on the list datatype. This time, we want to
reverse a list. Thus, this particular observation is the function reverse : A∗ → A∗ (where
the datatype is now parametric). For that, we may question if we can reuse something of the
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previous calculation since it is the the same datatype and we may think in the same recursive
pattern — reverse of [ ] is also a specific value, this time [ ], and reverse of (h:t) is recursively
applying function reverse to the tail t and then perform an operation on it with the head, in
this case concatenating h at the end. Let us then try to redraw diagram (2.16) in order to fit
this new function:

A∗
outList

))

reverse

��

� 1 + A × A∗

id+id×reverse
��

inList

gg

A∗ 1 + A × A∗

[g1 ,g2]

gg

(2.18)

Clearly, g1 = [ ]. What about g2? Well, since g2 deals with the case of a list by construction
(h : t), it will receive the pair (h, reverse t). Therefore, g2 (x, y) = y ++ [x].

2.6.1 Introducing catamorphisms over lists

It is worth noting that both functions share a recursive pattern which is very common: when
the list is empty they return a specific value. Otherwise, when the list in not empty, they
start by recursively invoking the function on the tail whose result is later combined with the
head producing the final result — note how similiar both diagrams (2.16) and (2.18) are, only
differing in the so-called gene, that is, function g in the following general diagram:

A∗
outList

))

f

��

� 1 + A × A∗

id+id×f
��

inList

gg

A∗ 1 + A × A∗

g

gg

(2.19)

Following the standard terminology, we say that f is the List-catamorphism induced by g and
use the notation f = L g M to express that fact. This terminology is derived from the Greek
word κατα (cata) meaning “downwards” — note the direction of the arrow, it is downwards
from the inductive type, expressing that a catamorphism allows the transformation of an
inductive datatype into any other type in a “destructive” process and dictated by the datatype
recursive pattern. Section 2.6 will delve into this subject. For now, it suffices to say that the
List-catamorphism induced by g :1+A×A∗ → B is the unique function L g M :A∗ → B defined
by

L g M = g · (id + id × L g M) · outList (2.20)

which is equivalent to

L g M · inList = g · (id + id × L g M) (2.21)
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Besides, note that the Haskell Standard Prelude already has a predefined function for List-
catamorphisms. Function foldr instantiated for lists follows as

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (h:t) = f h (foldr f z t)

and corresponds to a slightly different implementation of the List-catamorphism — in the
case of an empty list, the value is immediately delivered, there is no need for a constant
function; in the case of a list by construction, the corresponding function is curried, which
means that

foldr g k = L [k, ĝ] M (2.22)

For instance,

> sum = foldr (+) 0
> sum []
0
> sum [1..4]
10
>
> sum' = cataList (either (const 0) add)
> sum' []
0
> sum' [1..4]
10

2.6.2 Generalizing to F-catamorphisms

Given a functor F, any arrow A F Aαoo is said to be an F-algebra, where A is called the
carrier of the F-algebra α and contains the values that α operates on. This results in the
computation of new A-values based on existing ones which are “encapsulated” in a F-pattern

structure. Furthermore, given a function B A
foo and another F-algebra B F B

βoo , one
may consider to relate the F-algebra α to the other F-algebra β in the following manner:

A

f
��

F Aαoo

F f
��

B F B
β

oo

f · α = β · (F f ) (2.23)

This states that A-objects are mapped to B-objects in a structural way, according to the F-
pattern. Arrows with this structure are usually referred to as homomorphisms.

It is relevant to this topic the situation where α is an isomorphism (or a bijective function),
i.e., that exists some function α◦ such that α◦ · α = id and α · α◦ = id. Such algebras α
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are said to be initial and usually denoted by inT, that is, F T
inT // T assuming their carrier

set denoted by T. Besides, the converse of the algebra inT is called the coalgebra outT. An
F-coalgebra is an arrow F A Aoo , for a functor F, where A is also called the carrier.

In this particular case, α is such that, for every β , f is unique. The uniqueness of f is denoted
by the banana-brackets notation, f = L β M, followed by the universal property:

T

f=L β M
��

outT
&&

� F T

F f
��

inT

ee

B F B

β

ee

f = L β M ⇔ f · inT = β · F f (2.24)

and so defined as

L β M def
= β · F L β M · outT (2.25)

L β M is referred to as the (unique) catamorphism induced by algebra β (or fold over β ). This con-
struct is a generic and recursive expression that transforms T into B, following a “recursive-
descent” approach as dictated by functor F.

As expected, the universal property (2.24) gives rise to the following derived properties:

• Cata-cancellation

Lα M · inT = α · F Lα M (2.26)

• Cata-fusion

f · Lα M = L β M⇐ f · α = β · F f (2.27)

• Cata-reflection

L inT M = idT (2.28)

2.6.3 Catamorphisms over leaf trees

data LTree a = Leaf a | Fork (LTree a, LTree a) deriving (Show, Eq, Ord)

inLTree :: Either a (LTree a, LTree a) -> LTree a
inLTree = either Leaf Fork

outLTree :: LTree a -> Either a (LTree a,LTree a)
outLTree (Leaf a) = i1 a
outLTree (Fork (t1,t2)) = i2 (t1,t2)
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2.7 Parameterization and type functors

TBC

Cata-map-definition

T f def
= L inT · B (f , id) M (2.29)

Cata-absorption

L g M · L inT · B (f , id) M = L g · B (f , id) M (2.30)

2.7.1 Leaf trees’ type functor

instance Functor LTree
where fmap f = cataLTree (inLTree . baseLTree f id)

2.8 Anamorphisms

The objective now is to synthetize or produce an inductive datatpye, that is, a function with
the signature f : A→ T.

2.8.1 Introducing anamorphisms over lists

Greek αυα (ana) meaning “upwards”.
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2.8.2 Generalizing to F-anamorphisms

T

outT
&&

� F T

inT

ee

B

k=[(β )]

OO

β

88F B

F k

OO k = [(β )] ⇔ outT · k = (F k) · β (2.31)

• Ana-cancellation

out · [(g)] = F [(g)] ·g (2.32)

• Ana-fusion

[(g)] ·f = [(h)]⇐ g · f = (F f ) · h (2.33)

• Ana-reflection

[(outT)] = idT (2.34)

• Ana-map-definition

T f = [(B (f , id) · outT)] (2.35)

• Ana-absorption

T f · [(g)] = [(B (f , id) · g)] (2.36)

2.8.3 Anamorphisms over leaf trees

TBC



36 CHAPTER 2. INTRODUCTION TO POINTFREE RECURSION

2.9 Hylomorphisms

A

[(g)]
��

g
''
F A

F [(g)]
��

T

L f M
��

outT
&&

� F T

F L f M
��

inT

ee

B F B

f

ee

J f , g K = L f M · [(g)] (2.37)

2.9.1 Divide & conquer

A

��
h

��

divide
''
F A

��
F h

��

T

��

outT
&&

� F T

��

inT

ee

B F B

conquer

ee

h = conquer · F h · divide
= L conquer M · [(divide)]

(2.38)

Problem 4 Consider the following system of maintaining and using a dictionary: it
will be built over a tree in which each node will have only one letter of the word and
each leaf the respective translation (one or more synonyms).
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.

A

B

A

Brim L

O

Schock

M

I

G

O

Friend, Buddy

O

R

Love

P

E

Foot D

R

A

Stone

Fig. 1: Example of a dictionary.

data Exp v o = Var v -- expressions are either variables
| Term o [ Exp v o ] -- or terms involving operators and

-- subterms
deriving (Show,Eq)

type Dictionary = Exp [String] Char

Implement the operation translate :: (String, Dictionary) -> [String]

that searches for translations for a given word, using the divide & conquer method.

Solution

S × D

translate

��

//

divide = φ·(outList×outExp)

++
(1 + C × S) × (S∗ + C × D∗) φ // 1 + (S∗ + (S × D)∗)

id+(id+map translate)
��

S∗ 1 + (S∗ + (S∗)∗)
conquer = [nil ,[id ,concat]]

oo

translate = conquer . (id -|- (id -|- map translate)) . divide where
divide = phi . (outList >< outExp)
phi (Left (), Left ts) = i2 (i1 ts)
phi (Left (), Right _) = i1 ()
phi (Right _, Left _) = i1 ()
phi (Right (c1, cs), Right (c2, ds)) =

if (c2 == '.') then (i2 . i2 . r) (c1:cs, ds)
else if (c1 == c2) then (i2 . i2 . r) (cs, ds)

else i1 ()
r (s, ds) = map (\d -> (s, d)) ds
conquer = either nil (either id concat)
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2.10 Mutual recursion

TBC

The Fibonacci sequence In mathematics, the Fibonacci numbers, usually denoted by Fn,
form a sequence of natural numbers, named Fibonacci sequence, where each number is ob-
tained from the addition of the previous two, i.e.,

F0 = 1

F1 = 1

Fn+1 = Fn + Fn−1, n > 1

For example, the first twelve elements are, respectively,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

TBC

{
f · inT = h · F ⟨f , g⟩
g · inT = k · F ⟨f , g⟩ ≡ ⟨f , g⟩ = L ⟨h, k⟩ M

≡ { inT = [0 , succ] ; F f = id + f }{
f · [0, succ] = h · (id + ⟨f , g⟩)
g · [0, succ] = k · (id + ⟨f , g⟩) ≡ ⟨f , g⟩ = L ⟨h, k⟩ M

≡ { +-fusion (1.28) ; h = [h1 , h2] e k = [k1 , k2]1}{
[f · 0, f · succ] = [h1 , h2] · (id + ⟨f , g⟩)
[g · 0, g · succ] = [k1 , k2] · (id + ⟨f , g⟩)

≡ ⟨f , g⟩ = L ⟨[h1 , h2], [k1 , k2]⟩ M

≡ { extensional equality (1.2) ; composition (1.3) ; split (1.13) ; ×-def (1.16) }

{
f 0 = a
f (n + 1) = h2 (f n, g n){
g 0 = b
g (n + 1) = k2 (f n, g n)

≡ ⟨f , g⟩ = L ⟨[a, h2], [b, k2]⟩ M

int fibonacci(int n){
int x = 1, y = 1, i;

1 h and k are post-composed with a coproduct and therefore are alternatives (eithers).
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for (i = 1; i <= n; i++){
int a = x;
x = x + y;
y = a;

}
return y;

}

2.11 “Banana-split” — a corollary of the mutual recursion law

F T
inT

ss

f6

��

F L i M

��

F L j M

��

T

f7

��

L i M

��

L j M

��

F A
i

ttA F (A × B)
f4

ss

f1
ee

f2
%%

f5oo

f3

{{

A × B
π1

bb

π2 ""

F B

j
ssB

2.12 Higher-order catamorphisms

f · (inT × id) = h · G f · φ ⇔ f = L h · G ap · φ M (2.39)

The left-hand side of (2.39) is the G-hylomorphism

T × B
f
��

G (T × B)
G f
��

F T × B
φ
oo

inT×id

ss

A G A
h

oo
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f = h · G f · φ · (outT × id)

which is equivalent to the F-catamorphism

T

f ��

F T
inToo

F f��
AB F AB

h·G ap·φ
oo

A G Ahoo G (AB × B)G apoo F AB × Bφoo

f = L h · G ap · φ M

Function take as a higher-order catamorphism The uncurried version of the function take,
with signature t̂ake :: Î0 × A∗ → A∗, is given by the following anamorphism on lists:

Î0 × A∗

t̂ake
��

1 + A × (Î0 × A∗)

G t̂ake
��

(1 + Î0) × A∗φ
oo

L inÎ0

rr

A∗ 1 + A × A∗
inList

oo

where

φ = [i1 · π1 , (π2 + xr) · distr · (id × outList)] · distl
xr = ⟨π1 · π2, id × π2⟩
L f = f × id
G f = id + id × f

that is,

t̂ake = [(φ · L outÎ0 )]

or, from a more general perspective, by the hylomorphism

t̂ake = J inList, φ · L outÎ0 K

which corresponds to

t̂ake = inList · G t̂ake · φ · L outÎ0
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Now, let us recurr to the power of the adjoint recursion in order to define the original (curried)
version of function take as a higher order catamorphism:

Î0

take
��

1 + Î0
inÎ0oo

id+take
��

(A∗)A
∗

1 + (A∗)A
∗

h·G ap·φ
oo

take = L inList · G ap · φ M

Simplifying the gene of the catamorphism:

[f , g] = inList · G ap · φ
= { Definition of G ap }

[f , g] = inList · (id + id × ap) · [i1 · π1 , (π2 + xr) · distr · (id × outList)] · distl
= { }

[f , g] = [nil, cons · (id × ap)] · [i1 · π1 , (π2 + xr) · distr · (id × outList)] · distl
= { }

[f , g] = [nil, [nil, cons · (id × ap)] · (π2 + xr) · distr · (id × outList)] · distl
= { }

[f , g] = [nil, [nil, cons · (id × ap) · xr] · distr · (id × outList)] · distl
= { [f , g] = [f , g] · distl }{

f = nil
g = [nil, cons · (id × ap) · xr] · distr · (id × outList)

= { f · (id × g) = (·g) · f }{
f = nil
g = (·outList) · [nil, cons · (id × ap) · xr] · distr

In order to continue simplifying the gene, remember that A × B � B × A. Like this, using
the function flip : (A → B → C) → B → A → C, we can easily identify the following
isomorphism:

K × A→ B

flip·curry

77� A→ BK

uncurry·flip
ww

(2.40)

from which the following property is extracted:

[flip f , flip g] = flip [f , g] · distr (2.41)
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which will be of help in the further simplification:{
f = nil
g = (·outList) · (flip (flip [nil, cons · (id × ap) · xr] · distr))

= { }{
f = nil
g = (·outList) · (flip [flip nil, flip cons · (id × ap) · xr])

= { }{
f = nil
flip ((·inList) · g) = [flip nil, flip cons · (id × ap) · xr]

= { }
f = nil{
(flip ((·inList) · g)) · i1 = flip nil
(flip ((·inList) · g)) · i2 = flip cons · (id × ap) · xr

= { flip-fusion ; remove flip both sides }
f = nil{
(·i1) · (·inList) · g = nil
(·i2) · (·inList) · g = cons · (id × ap) · xr

= { }
f = nil{
(·(inList · i1)) · g = nil
(·(inList · i2)) · g = cons · (id × ap) · xr

= { }
f = nil{
(g k) · nil = nil
(g k) · cons = cons · (id × ap) · xr k

= { }
f = nil{
g k [ ] = [ ]
g k (h : t) = cons · (id × ap) · xr k (h, t)

= { }
f = nil{
g k [ ] = [ ]
g k (h : t) = h : k t

Thus, function take is given by the following (higher order) catamorphism:
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take = L [f , g] M where
f = nil
g k [ ] = [ ]
g k (h : t) = h : k t
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Chapter 3

Introduction to monadic programming

Monads are race functors

J.N. Oliveira

This chapter introduces a significant tool in modern functional programming, namely the
monad. The concept of a monad holds great relevance in computer science today as it serves
as a special case of a functor, a “race functor”. This name is due to the fact that it pro-
vides a unified and elegant approach to describe various computational effects, including
input/output, comprehension notation, state variable manipulation, probabilistic behavior,
partial behavior, nondeterminism, and more.

We shall start this chapter by analyzing the already mentioned partial behavior — the sit-
uation where a function is defined for some inputs but not for others, i.e., a function may
produce a valid result for certain inputs but may fail for others — and nondeterminism — in
this case, the ability to represent and manipulate multiple possible values or choices (which
does not mean that the computation is random or unpredictable in the usual sense of non-
determinism).

3.1 Partial functions

Recall function head : [a] → a which outputs the first element of a finite list. It is evident
that head [ ] is undefined since [ ] contains no elements. Thus, attempting to output the first
element from it yields an undefined result:

> head []
*** Exception: Prelude.head: empty list
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Functions like head are referred to as partial functions because they cannot be applied to
all well-typed inputs, that is, they may diverge or produce an error for some of such (well-
typed) inputs. The occurrence of this potentially dangerous behavior is a significant concern
in programming. To mitigate this behavior, there are two alternatives. The first approach is
to ensure that every call to head x is protected by verifying the pre-condition x . [ ]. This
involves wrapping such calls in contexts that guarantee the required conditions. The sec-
ond approach is to handle exceptions explicitly, using, for example, the parametric datatype
Maybe:

head' :: [a] -> Maybe a
head' [] = Nothing
head' (h:t) = Just x

In words, head′ x maybe return a value — if x , [ ] it clearly does, but for x = [ ] it doesn’t.
Therefore, the Maybe datatype may be used to handle with undefined cases. Besides, note
thatMaybe A � 1 + A acting like a pointer as in e.g. the C programming language. Thus, one
may regard as partial every function of type

1 + B A
goo

for some A and B, that is, partial functions point to 1 in some cases.

3.2 Composing partial functions

Partial functions do not compose in general:

1 + B A
goo

1 + C B
foo

f needs to be somehow extended to be able to accpet arguments of type 1 + B:

1

i1
��

i1 ,,
1 + B

[i1 ,f ]

zz

A
goo

1 + C B
foo

i2

VV (3.1)

Note how the exception produced by the producer function g is propagated to the output of
the consumer function f . Thus, we may define the composition of partial functions as

f • g def
= [i1 , f ] · g (3.2)

This means that,
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(f • g) a = f ′ (g a) where
f ′ (i1 ()) = i1 ()
f ′ (i2 x) = f x

or, in terms of the Maybe datatpye,

(f • g) a = f ′ (g a) where
f ′ Nothing = Nothing
f ′ (Just x) = f x

Now, it is of paramount importance to note that diagram 3.1 can be subject to to redesign
when considering that, by +-absorption (1.29), [i1 , f ] = [i1 , id] · (id + f ):

1 + (1 + C)
[i1 ,id]

��

1 + Bid+foo A
goo

1 + C B
foo

The significant importance relies on the fact that it can be simplified when considering func-
tor {

F X = 1 + X
F f = id + f

and assuming µ = [i1 , id], that is,

F (F C)
µ
��

F B
F foo A

goo

F C B
foo

(3.3)

Before explaining the reason behind this, let us consider another example.

3.3 List nondeterminism

Another computational effect is that of producing multiple outputs, which can be encapsu-
lated, for example, within a list:

B∗ A
goo

C∗ B
foo

In this case, the consumer function f must be applied to all those elements produced by the
producer function g and we may consider that the output values should be concatenated.



48 CHAPTER 3. INTRODUCTION TO MONADIC PROGRAMMING

That is,

(B∗)∗

concat
��

B∗
map foo A

goo

C∗ B
foo

Again, and this time considering functor{
F X = X∗

F f = map f

and µ = concat, one obtains exactly the same diagram:

F (F C)
µ
��

F B
F foo A

goo

F C B
foo

3.4 Finally monads!

T (T C)
µ
��

T B
T foo A

goo

f •g

ggT C B
foo

(3.4)

f • g def
= µ · T f · g (3.5)

A u // T A T (T A)µoo

3.4.1 Monad LTree

Recall the Haskell definition of a Leaf Tree:

data LTree a = Leaf a | Fork (LTree a, LTree a)
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This datatpye leads to the following isomorphism:

LTree A

outLTree --
� A + (LTree A)2

[Leaf ,Fork]
jj

As we have seen, a monad has two operations at its disposal, u:A→ T A and µ :T (T A) → A,
which in this case are clearly identified as

A
Leaf // LTree A LTree (LTree A)

L [id ,Fork] Moo

Let us know check if properties unit (??) and multiplication (??) hold:

• unit: µ · u = µ · T u = id

µ · u
= { µ = L [id , Fork] M; u = Leaf }

L [id , Fork] M · Leaf
= { cata-definition (2.25); L [id , Fork] M = µ }

[id , Fork] · (id + µ2) · outLTree · Leaf
= { outLTree · Leaf = i1 since Leaf = inLTree · i1 }

[id , Fork] · (id + µ2) · i1
= { i1-natural (1.30); id-natural (1.7) }

[id , Fork] · i1
= { +-cancellation (1.27) }

id

□

µ · T u
= { µ = L [id , Fork] M; u = Leaf ; T = LTree }

L [id , Fork] M · LTree Leaf
= { cata-absorption (2.30) }

L [id , Fork] · (Leaf + id2) M
= { +-absorption (1.29); ×-id-functor (1.23); id-natural (1.7) }

L [Leaf , Fork] M
= { cata-reflection (1.34) }

id

□
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• multiplication: µ · µ = µ · T µ

µ · µ = µ · T µ

≡ { µ = L [id , Fork] M; cata-absorption (2.30) }

µ · L [id , Fork] M = L [id , Fork] · (µ + F id) M
≡ { +-absorption (1.29); id-functor (2.5); id-natural (1.7) }

µ · L [id , Fork] M = L µ Fork M

⇐ { cata-fusion (??) }

µ · [id , Fork] = [µ , Fork] · (id + µ2)
≡ { }{

µ = µ

L [id , Fork] M · Fork = Fork · µ2

≡ { trivial; Fork = inLTree · i2 }

L [id , inLTree · i2] M · inLTree · i2 = inLTree · i2 · µ2

≡ { cata-cancellation (??) }

[id , inLTree · i2] · (id + µ2) · i2 = inLTree · i2 · µ2

≡ { +-absorption (1.29) }

[id , inLTree · i2 · (sqm µ)] = inLTree · i2 · µ2

≡ { +-cancellation (1.27) }
true

□

Thus, we may define an instance of the class Monad as

instance Monad LTree where
return = Leaf
t >>= g = (mu . fmap g) t where

mu = cataLTree (either id Fork)

The monad LTree is a particular case of the following monad:

T X

outT
))

� B (X, T X)

inT

hh

{
B (X,Y ) = X + F Y
B (f , g) = f + F g for a given functor F

µ = L [id , inT · i2] M
u = inT · i1
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3.5 Monadic application (or binding)

TBC

3.6 Sequencing and the do-notation

TBC

3.7 Monadic recursion

TBC

3.8 The state monad

TBC

3.9 The monad IO

TBC

Problem 5 The Truchet tiles are patterns obtained by randomly generating two-
dimensional combinations of basic tiles. Those shown in the figure 2 are known as
Truchet-Smith tiles

https://en.wikipedia.org/wiki/Truchet_tiles
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Fig. 2: Truchet-Smith tiles.

and may be displayed in Haskell with the Gloss library as

put = uncurry Translate

truchet1 =
Pictures [put (0,80) (Arc (-90) 0 40), put (80,0) (Arc 90 180 40)]

truchet2 =
Pictures [put (0,0) (Arc 0 90 40), put (80,80) (Arc 180 (-90) 40)]

Note that the tiles have dimensions 80x80. In this problem it is intend to program the
random generation of mosaics of Truchet-Smith tiles using the Random monad and the
Gloss library to produce the result. Besides, the program should generate mosaics of
any size.

Solution

pickTruchet :: R Picture
pickTruchet = pick $ Probability.uniform [truchet1, truchet2]

mosaic x y = splitIn x $ take (x*y) $ repeat pickTruchet where
splitIn n = anaList (((!) -|- (splitAt n . cons)) . outList)
-- splitIn n [] = []
-- splitIn n t = (cons . (id >< splitIn n) . splitAt n) t

translateX _ _ _ [] = []
translateX n i j [h] = [put (80*i, 0) h]
translateX n i j (h1:h2:t) =

put (i*80, 0) h1 : put (j*80, 0) h2 : translateX (n-2) (i+1) (j-1) t

translateY _ _ _ [] = []
translateY n i j [h] = [map (put (0, 80*i)) h]
translateY n i j (h1:h2:t) =

map (put (0, i*80)) h1 : map (put (0, j*80)) h2 :
translateY (n-2) (i+1) (j-1) t

translateTiles x = translateY x 0 (-1) . map (translateX x 0 (-1))

displayTruchet :: Int -> Int -> IO ()
displayTruchet x y = do

m <- sequence (map sequence (mosaic x y))
let window = InWindow

"Truchet" -- window title
(80*x, 80*y) -- window size
(0, 0) -- window position

display window white ((pictures . concat . (translateTiles x)) m)

https://hackage.haskell.org/package/random-1.1/docs/System-Random.html
https://hackage.haskell.org/package/gloss-1.13.1.1/docs/Graphics-Gloss.html
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Fig. 3: Output of displayTruchet 10 10.

3.10 The Adventurers’ Problem

In the middle of the night, four adventurers encounter a shabby rope-bridge spanning
a deep ravine. For safety reasons, they decide that no more than 2 people should cross
the bridge at the same time and that a flashlight needs to be carried by one of them
in every crossing. They have only one flashlight. The 4 adventurers are not equally
skilled: crossing the bridge takes them 1, 2, 5, and 10 minutes, respectively. A pair of
adventurers crosses the bridge in an amount of time equal to that of the slowest of
the two adventurers.

One of the adventurers claims that they cannot be all on the other side in less than
19 minutes. One companion disagrees and claims that it can be done in 17 minutes
with just 5 moves. Who is right? That’s what we’re going to find out.

The solution is to take advantage of the non-deterministic monad (List) to use brute force
and calculate all possible moves until we reach the final state. To deal with the time adven-
turers need to cross, we’ll use the duration monad (implemented by prof. Renato Neves in is
lectures of Cyber-Physical Programming [Neves]) which adds the time each adventurer takes
in a given move.
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data Duration a = Duration (Int, a) deriving Show

getDuration :: Duration a -> Int
getDuration (Duration (d, x)) = d

getValue :: Duration a -> a
getValue (Duration (d, x)) = x

instance Functor Duration where
fmap f (Duration (i, x)) = Duration (i, f x)

instance Applicative Duration where
pure x = (Duration (0, x))
(Duration (i, f)) <*> (Duration (j, x)) = (Duration (i+j, f x))

instance Monad Duration where
(Duration (i, x)) >>= k = Duration (i + getDuration (k x), getValue (k x))
return = pure

This duration monad will be “encapsulated” in our monad AdventurersLog. This one will
offer, for a certain state, a list of the possible following states with the respective duration
needed to get it and will also offer the path traveled at the moment which will be expressed
as a string, and its elegance will become apparent as we delve into its details. For now, let’s
analyze the construction of our monad!

data AdventurersLog a = ALog [Duration (String, a)] deriving Show

remALog :: AdventurersLog a -> [Duration (String, a)]
remALog (ALog a) = a

instance Functor AdventurersLog where
fmap f = ALog . map (fmap (id >< f)) . remALog

instance Applicative AdventurersLog where
pure a = ALog [Duration (0, ("", a))]
f <*> l = ALog $ do

Duration (d1, (p1, g)) <- remALog f
Duration (d2, (p2, a)) <- remALog l
return (Duration (d1+d2, (p1++p2, g a)))

instance Monad AdventurersLog where
return = pure
x >>= f = ALog $ do

Duration (d, (p, a)) <- remALog x
map (\ (Duration (d', (p', a))) ->

(Duration (d + d', (p ++ p', a)))) (remALog (f a))

Modelling the problem Adventurers are represented by the following datatype:

data Adventurer = P1 | P2 | P5 | P10 deriving (Show, Eq)

The names for the adventurers are quite suggestive as they are identified by the time they
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take to cross. However, it will be very useful to have a function that returns, for each adven-
turer, the time it takes to cross the bridge.

getTimeAdv :: Adventurer -> Int
getTimeAdv P1 = 1
getTimeAdv P2 = 2
getTimeAdv P5 = 5
getTimeAdv P10 = 10

The lantern is represented by the element (), so we can represent all the entities by using
the coproduct Either Adventurer (). Besides, we need to define the state of the cross-
ing, i.e., the current position of each adventurer (and the lantern too). The function False
represents the initial state of the crossing, with all adventurers and the lantern on the left
side of the bridge. Similarly, the function True represents the end state of the crossing, with
all adventurers and the lantern on the right side of the bridge. We also need to define the
instances Show and Eq to visualize and compare, respectively, the states of the crossing.

type State = Either Adventurer () -> Bool

instance Show State where
show s = show (show [s (Left P1),

s (Left P2),
s (Left P5),
s (Left P10),
s (Right ())])

instance Eq State where
s1 == s2 = and [s1 (Left P1) == s2 (Left P1),

s1 (Left P2) == s2 (Left P2),
s1 (Left P5) == s2 (Left P5),
s1 (Left P10) == s2 (Left P10),
s1 (Right ()) == s2 (Right ())]

cInit :: State
cInit = const False

cEnd :: State
cEnd = const True

state2List :: State -> [Bool]
state2List s = [s (Left P1),

s (Left P2),
s (Left P5),
s (Left P10),
s (Right ())]

Obviously, it is useful a function that changes the state of the crossing for a given object:

changeState :: Either Adventurer () -> State -> State
changeState a s = \ a' -> if a' == a then not (s a') else s a'

Even more useful is a function that changes the state of the crossing of a list of objects:
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mChangeState :: [Either Adventurer ()] -> State -> State
mChangeState x s = foldr changeState s x

With this, we are now ready to define all the valids plays the adventurers canmake for a given
state storing the respective duration required and the move made. So, for a given s : State,
we’ll compute allValidPlays : AdventurersLog State ∼ LSD [Duration (String, State) ]. For
that, we need to

1. move adventurers — but only adventurers who can pick up the lantern. So, for that
given state, we first need to calculate the adventurers who are where the lantern is.

advsWhereLanternIs :: State -> [Adventurer]
advsWhereLanternIs s = filter ((== s (Right ())) . s . Left)

[P1, P2, P5, P10]

2. group them into all possible combinations. As we know, a maximum of 2 adventurers
can cross. This parametric function

comUpTo2 :: Eq a => [a] -> [[a]]
comUpTo2 = conc . (split f g) where

f t = do {x <- t; return [x]}
g t = do {x <- t; y <- (remove x t); return [x, y]}
remove x [] = []
remove x (h:t) = if x==h then t else remove x t

applied to the list of all possivle adventurers will return all possible groups in sublists.

3. add the time both group needs to cross —we just need to map the function getTimeAdv
and return the maximum value. We may also produce the pair with this result and the
initial list of adventurers.

addCrossTime :: [Adventurer] -> (Int, [Adventurer])
addCrossTime = split (maximum . (map getTimeAdv)) id

4. add the lantern to the group that is going to cross — they need the lantern to cross.

addLantern :: (Int, [Adventurer]) -> (Int, [Either Adventurer ()])
addLantern = id >< ((Right () :) . map Left)

This returns the list of objects that are going to cross and the time needed to do it.

5. finally, recurr to the function map mChangeState to change the state of the elements
which are going to cross, i.e., compute our possible moves and encapsulate it in the
monad using the composition LSD · map Duration. Yes, we are missing something —
how to produce the path (or the trace)! For now, let us just appreciate the final function.
How we get the path will be explained after.

allValidPlays :: State -> AdventurersLog State
allValidPlays s = ALog $ map Duration $

map (id >< (split (toTrace s) id) . (mCS s)) t where
t = (map (addLantern.addCrossTime) . comUpTo2 . advsWhereLanternIs) s
mCS = flip mChangeState
toTrace s s' = printTrace (state2List s, state2List s')
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The trace log As we saw, our monad AdventurersLog keeps the trace by calling the func-
tion toTrace :: State → State → String. But what does this function do? First, we can
see that, according to the representation of the state, adventurers can be represented by
indexes. We take advantage of this to be able to present an elegant trace of the moves.
For example, if the previous state is [False, False, False, False, False] and the current state is
[True,True, False, False,True], we know that P1 and P2 have crossed (because the first two
and the last elements and diferent). So, we can simply compare element to element and,
if they are different, we keep the index. In the previous example, it would return [0, 1, 4]
— index 4 represents the lantern, and because we assume that the movements are always
valid, we can ignore that.

index2Adv :: Int -> String
index2Adv 0 = "P1"
index2Adv 1 = "P2"
index2Adv 2 = "P5"
index2Adv 3 = "P10"

indexesWithDifferentValues :: Eq a => ([a], [a]) -> [Int]
indexesWithDifferentValues (l1, l2) = aux l1 l2 0 where

aux :: Eq a => [a] -> [a] -> Int -> [Int]
aux [] l _ = []
aux l [] _ = []
aux (h1:t1) (h2:t2) index = if h1 /= h2 then index : aux t1 t2 (index + 1)

else aux t1 t2 (index + 1)

The result [0, 1, 4] means that “P1 and P2 crosses”. We now have to automate this (pretty)
print. We only need to ignore the lantern index (4), convert the indexes to the respective
adventurers and define a print function for them.

printTrace :: ([Bool], [Bool]) -> String
printTrace = prettyLog . (map index2Adv) . init . indexesWithDifferentValues

prettyLog :: [String] -> String
prettyLog = Cp.cond ((>1) . length) f ((++ " cross\n") . head) where

f = (++" crosses\n") . conc . ((concat . map (++" and ")) >< id) .
(split init last)

Back to function allValidPlays, we do, for a given state s and each following state s′,

toTrace :: State -> State -> String
toTrace = curry $ printTrace . (state2List >< state2List)

So, this representation is done right in the calculation of the possible moves. At the end, we
just need to get that already prepared trace. Now, we shall see the trace of the optimal play
which shows how elegant the log is.

Solving the problem We may define a function that, for a given number n and an initial
state, calculates all possible n-sequences of moves that the adventures can make. For that,
we may took advantage of the do notation — let the monad do the work!
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exec :: Int -> State -> AdventurersLog State
exec 0 s = allValidPlays s
exec n s = do ps <- exec (n-1) s

allValidPlays ps

The previous functions is good, but not so good — we don’t know how many sequences
are needed to reach the end state. It would be much better if we could execute all possible
sequences of moves that the adventures can make for a given state untill it fulfills a predicate
over a state (passed as a parameter). Additionally, it also returns the number of moves needed
to fulfill that predicate.

execPred :: (State -> Bool) -> State -> (Int, AdventurersLog State)
execPred p s = aux p s 0 where

aux p s it =
let st = exec it s

res = filter pred (map remDur (remALog st)) in
if length (res) > 0 then ((it+1) , ALog (map Duration res))
else aux p s (it+1) where

remDur (Duration a) = a
pred (_, (_,s)) = p s

We may use this last function to solve the problem and see who is right. For that, we define
one more function to see if it is possible for all adventurers to be on the other side in ⩽ n
minutes and how many moves are needed for that.

leqX :: Int -> (Int, Bool)
leqX n = if res then (it, res)

else (-1, res) where
res = length (filter p (map remDur (remALog l))) > 0
(it,l) = execPred (== cEnd) cInit
p (d,(_,_)) = d <= n
remDur (Duration a) = a

So let us see who was right!

> p2 (leqX 17) && p1 (leqX 17) <= 5
True

So, it is possible for all adventurers to be on the other side in ⩽ 17minutes and not exceeding
5 moves. Actually, since p2 (leqX 16) is False, 17 minutes is the the optimal time for
solving the problem (with exactly 5 moves). One could also get that information by executing
the following function optimalTrace, to which the reader is invited to analyze.

optimalTrace :: IO ()
optimalTrace =

putStrLn . t . map remDur . remALog . p2 $ execPred (== cEnd) cInit where
t = prt . (split (head . map p1) (map (p1.p2))) . pairFilter .

split (minimum . map p1) id
remDur (Duration a) = a
pairFilter (d, l) = filter (\ (d', (_, _)) -> d == d') l
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p = Cp.cond ((>1) . length) p' head
p' = conc . split (concat . map ((++("\nOR\n\n"))) . init) last
prt (d, l) = (p l) ++ "\nin " ++ (show d) ++ " minutes."

Result:

> optimalTrace
P1 and P2 crosses
P1 cross
P5 and P10 crosses
P2 cross
P1 and P2 crosses

OR

P1 and P2 crosses
P2 cross
P5 and P10 crosses
P1 cross
P1 and P2 crosses

in 17 minutes.
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